1 研究背景
图1 海洋环境分区图
Fig.1 The schematic of marine environment
图2 海洋环境腐蚀倾向示意图
Fig.2 The schematic of corrosion tendency of marine environment
2 海上风电防腐技术
图3 海上升压站防腐涂层
Fig.3 The schematic of anti-corrosion coating for sea booster station
3 结论
派旗纳米是一家立足于深圳专注于氟改性聚酯纳米涂层材料研发制造与电子防护整体解决方案供应商,已获批国家高新技术企业,在精密电子制造工艺中为PCBA提供360度全方位防水、防潮、防腐蚀的纳米涂层保护,高效提升线路板在潮湿环境运行稳定性及降低故障售后率,是户外产品结构防水的黄金搭档,消费类电子一键防水防盐雾的好帮手,欢迎联系索取测试样品。派旗纳米官网:https://paiqinano.com
大量电子纳米防护涂层剂、配套喷镀设备、OEM代工服务等请关心“派旗纳米”微信公众号
纳米涂层剂理化性能详细参数直接点击:纳米电子防护涂层剂参数
技术咨询:赵先生:130 4896 4893
参考文献
[49]CUI Fangying.Study on the corrosion behavior of mild steel and inhibition effect of inhibitors under wet-dry cyclic conditions[D]. Chongqing: Chongqing University, 2016.[本文引用: 1]
[1]易侃,张子良,张皓,等。海上风能资源评估数值模拟技术现状及发展趋势[J]. 分布式能源,2021, 6(1): 1-6.[本文引用: 1]YI Kan, ZHANG Ziliang, ZHANG Hao, et al.Technical status and development trends of numerical modeling for offshore wind resource assessment[J]. Distributed Energy, 2021, 6(1): 1-6.[本文引用: 1]
[2]LIU Yan, GU Yali, WANG Jingmin.Influence model of wind power capacity in load response system under smart grid environment[J]. Journal of Intelligent and Fuzzy Systems, 2020, 39(1): 1-8.[本文引用: 1]
[3]汪大洋,刘宗烨,李沛,等。基于模块化多电平矩阵换流器的海上风电分频系统经济性分析[J]. 分布式能源,2018, 3(2): 16-22.[本文引用: 1]WANG Dayang, LIU Zongye, LI Pei, et al.Economic analysis of fractional frequency transmission system for offshore wind farm based on modular multilevel matrix convertert[J]. Distributed Energy, 2018, 3(2): 16-22.[本文引用: 1]
[4]黄方能,张红丽,马骞,等。受端电网特高压直流系统与海上风电交互影响及评价指标[J]. 广东电力,2019, 32(3): 96-103.[本文引用: 1]HUANG Fangneng, ZHANG Hongli, MA Qian, et al.Interactive effects between HVDC of receiving-end power grid and offshore wind power and evaluation index[J]. Guangdong Electric Power, 2019, 32(3): 96-103.[本文引用: 1]
[5]ZHANG Jin, ZHANG Jiwei, CAI Ling, et al.Energy performance of wind power in China: a comparison among inland, coastal and offshore wind farms[J]. Journal of Cleaner Production, 2017, 143(1): 836-842.[本文引用: 1]
[6]余浩,肖彭瑶,林勇,等。大规模海上风电高电压穿越研究进展与展望[J]. 智慧电力,2020, 48(3): 30-38.[本文引用: 1]YU Hao, XIAO Pengyao, LIN Yong, et al.Review on high voltage ride-through strategies for offshore doubly-fed wind farms[J]. Smart Power, 2020, 48(3): 30-38.[本文引用: 1]
[7]MEHMET B, ABDULKADIR Y, ERDOGAN S.Offshore wind power development in Europe and its comparison with onshore counterpart[J]. Renewable and Sustainable Energy Reviews, 2011, 15(2): 905-915.[本文引用: 1]
[8]SAMIRA, KEIVANPOUR, AMAR, et al.The sustainable worldwide offshore wind energy potential: a systematic review[J]. Journal of Renewable and Sustainable Energy, 2017, 9(6): 65902-65902.[本文引用: 1]
[9]刘晓辉,高人杰,薛宇。浮式风力发电机组现状及发展趋势综述[J]. 分布式能源,2020, 5(3): 39-46.[本文引用: 1]LIU Xiaohui, GAO Renjie, XUE Yu.Current situation and future development trend of floating offshore wind turbines[J]. Distributed Energy, 2020, 5(3): 39-46.[本文引用: 1]
[10]李战强。海上风机钢管桩基础耐腐蚀性研究[D]. 重庆:重庆交通大学,2014.[本文引用: 1]LI Zhanqiang.Research on anti-corrosion of steel pipe pile of offshore wind turbines[D]. Chongqing: Chongqing Jiaotong University, 2014.[本文引用: 1]
[11]薛宇,刘燕。海上湿气对风力机翼型及叶片气动性能影响研究[J]. 分布式能源,2016, 1(2): 21-27.[本文引用: 1]XUE Yu, LIU Yan.Influence of high humidity on the aerodynamic performance of offshore wind turbine airfoil/blade[J]. Distributed Energy, 2016, 1(2): 21-27.[本文引用: 1]
[12]WU Jie, WANG Zhixin, WANG Guoqiang.The key technologies and development of offshore wind farm in China[J]. Renewable and Sustainable Energy Reviews, 2014, 34: 453-462.[本文引用: 1]
[13]ZHU Xiangrong, HUANG Guiqiao, LIN Leyun, et al.Long term corrosion characteristics of metallic materials in marine environments[J]. Corrosion Engineering Science and Tech-nology, 2008, 43(4): 328-334.[本文引用: 1]
[14]AGHAJANI A.In situ corrosion protection of oil risers and offshore piles[J]. Materials Performance, 2008, 47(4): 38-42.[本文引用: 1]
[15]程鹏。东南沿海地区木构文物建筑的潮湿病害研究[D]. 哈尔滨:哈尔滨工业大学,2019.[本文引用: 1]CHENG Peng.Research on the humid diseases of timber relic buildings in the southeast coastal area[D]. Harbin: Harbin Institute of Technology, 2019.[本文引用: 1]
[16]詹耀。海上风电机组的防腐技术与应用[J]. 现代涂料与涂装,2012, 15(2): 15-18.[本文引用: 1]ZHAN Yao.Anticorrosion technology and application of offshore wind turbines[J]. Modern Paint and Finishing, 2012, 15(2): 15-18.[本文引用: 1]
[17]郎东旭,王立秋,李勇。石油平台海管立管腐蚀修复[J]. 涂料工业,2019, 49(4): 75-79.[本文引用: 1]LANG Dongxu, WANG Liqiu, LI Yong.Corrosion repairing of offshore platform riser[J]. Paint and Coatings Industry, 2019, 49(4): 75-79.[本文引用: 1]
[18]姚忠,孙绪东。海上风机钢结构基础防腐设计[J]. 钢结构,2012, 27(10): 77-79.[本文引用: 1]YAO Zhong, SUN Xudong.Anti-corrosion design of steel structure foundation of offshore wind turbines[J]. Steel Construction, 2012, 27(10): 77-79.[本文引用: 1]
[19]詹耀,刘瑶,于国利。我国不同区域风电场的腐蚀环境及防腐技术分析[J]. 上海涂料,2013, 51(10): 43-48.[本文引用: 1]ZHAN Yao, LIU Yao, YU Guoli.Analysis of the corrosion environment and corrosion protection technology of wind farm in different regions of China[J]. Shanghai Coatings, 2013, 51(10):43-48.[本文引用:1]
[20]LYE R E.Splash zone protection on offshore platforms: a norwegian operator’s experience[J]. Materials Performance, 2001, 40(4):40-45.[本文引用:1]
[21]韩恩厚,陈建敏,宿彦京,等。海洋工程结构与船舶的腐蚀防护:现状与趋势[J]. 中国材料进展,2014, 33(2):65-76, 113.[本文引用:1]HAN Enhou, CHEN Jianmin, SU Yanjing, et al.Corrosion protection techniques of marine engineering structure and ship equipment: current status and future trend[J]. Materials China, 2014, 33(2):65-76, 113.[本文引用:1]
[22]MOMBER A W, MARQUARDT T.Protective coatings for offshore wind energy devices (OWEAs):A review[J]. Journal of Coatings Technology and Research, 2017, 15(1):13-40.[本文引用:1]
[23]王培。海洋钢结构中的防腐控制[J]. 中国造船,2008, 10(49):177-181.[本文引用:1]WANG Pei.Anti-corrosion control in the offshore steel structure[J]. Shipbuilding of China, 2008, 10(49):177-181.[本文引用:1]
[24]侯保荣。海洋钢结构浪花飞溅区腐蚀控制技术[M]. 北京:科学出版社,2011: 10-100.[本文引用:1]HOU Baorong. Corrosion control technology in the splash zone of marine steel structure[M]. Beijing: Science Press, 2011: 10-100.[本文引用:1]
[25]周建龙,李晓刚,程学群,等。深海环境下金属及合金材料腐蚀研究进展[J]. 腐蚀科学与防护技术,2020, 22(1):47-51.[本文引用:1]ZHOU Jianlong, LI Xiaogang, CHENG Xuequn, et al.Research progress on corrosion of metallic materials in deep sea environment[J]. Corrosion Science and Protection Technology, 2020, 22(1):47-51.[本文引用:1]
[26]于林。硫酸盐还原菌生物膜电活性及腐蚀机理研究[D]. 青岛:中国科学院海洋研究所,2011.[本文引用:1]YU Lin.The electro-active characteristics of sulfate-reducing bacteria and its influence on the anaerobic corrosion of carbon steels[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2011.[本文引用:1]
[27]刘新。海上风电场的防腐蚀涂装[J]. 中国涂料,2011, 24(11):17-25.[本文引用:1]LIU Xin.Anticorrosive coating of offshore wind farm[J]. China Coatings, 2011, 24(11):17-25.[本文引用:1]
[28]刘啸波,胡颖。海上风机基础选择策略[J]. 中国船检,2010, 9(9):56-58.[本文引用:1]LIU Xiaobo, HU Ying.Basic selection strategy for offshore wind turbines[J]. China Ship Survey, 2010, 9(9):56-58.[本文引用:1]
[29]赵志峰。海上风电机组基础全寿命疲劳分析[D]. 大连:大连理工大学,2016.[本文引用:1]ZHAO Zhifeng.Thefatigue analysis of offshore wind turbine foundation in service[D]. Dalian: Dalian University of Technology, 2016.[本文引用:1]
[30]黄桂桥。铝合金在海洋环境中的腐蚀研究(Ⅲ):海水飞溅区16年暴露试验总结[J]. 腐蚀与防护,2003, 24(2):47-50.[本文引用:1]HUANG Guiqiao.Corrosion of aluminium alloys in marine environment(Ⅲ):a summary of 16 years exposure testing in splash zone[J]. Corrosion and Protection, 2003, 24(2):47-50.[本文引用:1]
[31]刘欣,周宇,李志美,等。接地材料在模拟溶液与现场埋片的腐蚀及相关性研究[J]. 智慧电力,2020, 48(12):104-108, 115.[本文引用:1]LIU Xin, ZHOU Yu, LI Zhimei, et al.Research on corrosion and correlation of grounding materials in simulated solution and metal specimens buried in underground[J]. Smart Power, 2020, 48(12):104-108, 115[本文引用:1]
[32]冯立超,贺毅强,乔斌,等。金属及合金在海洋环境中的腐蚀与防护[J]. 热加工工艺,2013, 42(24):13-17.[本文引用:1]FENG Lichao, HE Yiqiang, QIAO Bin, et al.Corrosion and protectionof metal and alloy in marine environment[J]. Hot Working Technology, 2013, 42(24):13-17.[本文引用:1]
[33]刘大杨,魏开金。金属在南海海域腐蚀电位研究[J]. 腐蚀科学与防护技术,1999, 11(6):330-334.[本文引用:1]LIU Dayang, WEI Kaijin.Corrosion potentials of metals in natural sea water of sorth China sea[J]. Corrosion Science and Protection Technology, 1999, 11(6):330-334.[本文引用:1]
[34]郭文涛。罗巴鲁涂料公司发展战略研究[D]. 上海:上海交通大学,2013.[本文引用:1]GUO Wentao.The research on development strategy of luobalu coating company[D]. Shanghai: Shanghai Jiao Tong University, 2013.[本文引用:1]
[35]刘宝,潘立,信会鹏,等。水性金属防腐涂料的应用与研究[J]. 化学建材,2009, 25(2):1-3.[本文引用:1]LIU Bao, PAN Li, XIN Huipeng, et al.Study and application of water-based anti-corrosion metallic coating[J]. Green Building, 2009, 25(2):1-3.[本文引用:1]
[36]任鹏禾,周宏明,许晓嫦,等。石墨烯改性无铬达克罗涂层的组织及耐腐蚀性能[J]. 中国表面工程,2018, 31(6):73-80.[本文引用:1]REN Penghe, ZHOU Hongming, XU Xiaochang, et al.Microstructure and corrosion resistance of graphene modified chromium-free dacromet coating[J]. China Surface Engineering, 2018, 31(6):73-80.[本文引用:1]
[37]肖齐洪。石墨烯增强绿色达克罗涂层制备及防护机理研究[D]. 贵州:贵州大学,2019.[本文引用:1]XIAO Qihong.Study on preparation and protection mechanism of graphene-enhanced green dacromet coating[D]. Guizhou: Guizhou University, 2019.[本文引用:1]
[38]詹耀,钟本旺。我国南方地区风电场的腐蚀成因及防腐涂装[J]. 上海涂料,2015, 53(5):34-37.[本文引用:1]ZHAN Yao, ZHONG Benwang.The corrosion causes and anticorrosion coating of wind farm in Chinese south area[J]. Shanghai Coatings, 2015, 53(5):34-37.[本文引用:1]
[39]詹耀。海上风电钢结构防腐及氟碳涂料应用[J]. 涂料技术与文摘,2012, 33(10):22-25, 28.[本文引用:1]ZHAN Yao.Anticorrosion technology for steel structure of offshore wind power system and application of fluorocarbon coatings[J]. Coating and Protection, 2012, 33(10):22-25, 28.[本文引用:1]
[40]贾新杰。水工金属结构埋件的长效防腐研究[D]. 郑州:华北水利水电大学,2019.[本文引用:1]JIA Xinjie.Long-term anti-corrosion research on embedded parts of hydraulic metal structures[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2019.[本文引用:1]
[41]孙雨丽。城市燃气管道安全管理研究[D]. 邯郸:河北工程大学,2011.[本文引用:1]SUN Yuli.Research on urban gas pipeline safety management[D]. Handan: Hebei University of Engineering, 2011.[本文引用:1]
[42]HUGUS D, HARTT W H.Effect of velocity on current density for cathodically polarized steel in seawater[J]. Corrosion-Houston Tx-,1999, 55(2):115-127.[本文引用:1]
[43]ROSSI S, BONORA P L, PASINETTI R, et al.Laboratory and field characterization of a new sacrificial anode for cathodic protection of offshore structures[J]. Corrosion-Houston Tx-,1998, 54(12):1018-1025.[本文引用:1]
[44]江炎兰,曲亮生。舰船的电化学腐蚀及其外加电流阴极保护法应用状况[J]. 材料保护,2010, 43(2):45-46, 80.[本文引用:1]JIANG Yanlan, QU Liangsheng.Electrochemical corrosion of ships and the application status of impressed current cathodic protection[J]. Materials Protection, 2010, 43(2):45-46, 80.[本文引用:1]
[45]岳强,王俊男,韩洋洋,等。外加电流法在海水冷却器防腐上的应用[J]. 化学工程师,2018, 32(9):77-79, 83.[本文引用:1]YUE Qiang, WANG Junnan, HAN Yangyang, et al.Application of impressed current method in corrosion prevention of seawater cooler[J]. Chemical Engineer, 2018, 32(9):77-79, 83.[本文引用:1]
[46]陈晶晶。海洋平台阴极保护实时监测与评估系统研究[D]. 大连:大连理工大学,2008.[本文引用:1]CHEN Jingjing.Study on real-time monitoring and evaluation system for the cathodic protection status of offshore platform[D]. Dalian: Dalian University of Technology, 2008.[本文引用:1]
[47]侯保荣。海洋钢结构浪花飞溅区腐蚀防护技术[J]. 中国材料进展,2014, 33(1):26-31.[本文引用:1]HOU Baorong.Anti-corrosion technology to steel structure in splash zone[J]. Materials China, 2014, 33(1):26-31.[本文引用:1]
[48]丁路遥。螺栓紧固件用不粘性矿脂防蚀膏的研究[D]. 北京:机械科学研究总院,2014.[本文引用:1]DING Luyao.Research on the non-sticky petrolatum anticorrosion grease applied to bolt fastener[D]. Beijing: China Academy of Machinery Science and Technology, 2014.[本文引用:1]
[49]崔芳莹。海水干湿交替条件下碳钢腐蚀行为及其缓蚀剂性能研究[D]. 重庆:重庆大学,2016.[本文引用:1]
文章来源与网络:公众号:分布式能源,原创著作权归作者所有